Oxidative Coupling of Methane over a $\mathrm{Li}_2\mathrm{O}$ - BeO System Catalyst

Ikuya MATSUURA, Takao DOI, and Yasuhide UTSUMI Faculty of Science, Toyama University, Toyama 930

The lithium-added beryllium oxide was studied as a catalyst for the oxidative coupling of methane. For example, 3 mol% Li-added BeO catalyst gave 813 mmol h⁻¹ g⁻¹ of C₂-STY and 63% of selectivity under the reaction conditions of 760 $^{\rm OC}$, P(CH₄) = 76.0 kPa, P(CH₄)/P(O₂) = 3 and W/F = 0.0033 g h 1⁻¹. The compound oxide Li₂Be₂O₃ was formed by Li₂O mixed with BeO at 700 $^{\rm OC}$. This compound oxide might be an active catalyst for the oxidative coupling of methane.

Since Ito $\underline{\text{et}}$ $\underline{\text{al}}$.¹⁾ reported that lithium - promoted magnesium oxide is an effective catalyst for the oxidative coupling of methane, Otsuka $\underline{\text{et}}$ $\underline{\text{al}}$.²⁾ and Okazaki $\underline{\text{et}}$ $\underline{\text{al}}$.³⁾ have published papers reporting that the addition of Li_2O to an active catalyst, Sm_2O_3 and BaO-CaO, respectively, enhances the activity and selectivity of this reaction. We reported that Li_2O -promoted ZnO catalyst also

has a high activity and selectivity for the oxidative coupling of methane. $^{4)}$

In this communication, we report the results of oxidative coupling of methane over lithium -added beryllium oxide with a Wurzite structure similar to zinc oxide.

The Li - added BeO cataTysts were prepared as follows; a specified quantity of lithium carbonate was added to a suspension of commercially available BeO in distilled water. This was heated to 100° C with vigorous stirring and evaporated to dryness. The dried substance was calcinated at 800° C for 4 h. By this method, six catalysts with 1, 3, 7, 12.5, 20, and 50 mol% Li in BeO were prepared. X - ray diffraction (XRD) results for Li - added BeO are shown in Fig.1. They indicate that the oxide is a mixture of BeO and the compound oxide Li₂Be₂O₃. 5)

The catalytic experiments were carried out in a fixed bed reactor at a constant flow rate, 50 ml/min, of the mixed gas of CH_4 , O_2 , and He

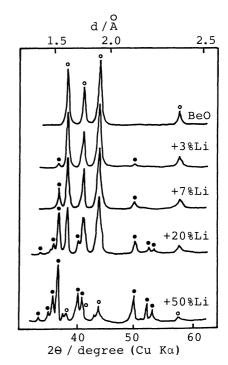


Fig. 1. XRD spectra of
Li₂O -BeO system catalyst.
o, BeO; ●, Li₂Be₂O₃.

1474 Chemistry Letters, 1987

under the pressure of one atmosphere. Figures 2-a, b, and c show the results obtained from the reaction performed in the temperature range of 600 to 800 $^{\rm O}{\rm C}$ using 0.1g BeO, 3 mol% Li - BeO and 50 mol% Li - BeO (Li_2Be_2O_3), respectively. The reactions were carried out under the partial pressures of 35 kPa of CH_4 and 16.5 kPa of O_2. The activity of unpromoted BeO for the methane oxidation was not so high with the selectivity for C_2-compounds, including C_2H_4 and C_2H_6, being rather low. Using 3 mol% Li - BeO as the catalyst, some C_2-compounds were already produced at 600 $^{\rm O}{\rm C}$ with the reaction proceeding until the yield of C_2-compounds attained approximately 22%. The consumption of O_2 by this time was more than 95%. The selectivity of C_2-compounds increased as the temperature was raised. After the selectivity reached the maximum of 60% at 680 $^{\rm O}{\rm C}$, it gradually dropped as the temperature was further increased. The catalytic activity of Li_2Be_2O_3 was not so high as that of 3 mol% Li - BeO but the selectivity for C_2-compounds reached the maximum of 65% at 740 $^{\rm O}{\rm C}$.

To examine the effects of the $\text{Li}_2\text{Be}_2\text{O}_3$, catalytic runs were performed at 740 $^{\text{O}}\text{C}$ using various amounts of catalyst composed of differing proportion of Li, until about 80% of the oxygen had been consumed. The results are shown in Table 1. When the amount of Li exceeded more than 3 mol% in the catalyst, the catalytic activity decreased as the surface area of the catalyst was reduced. However, the selectivity for C_2 -compounds increased with increasing Li concentration in the catalyst until the maximum value of 65% was attained on $\text{Li}_2\text{Be}_2\text{O}_3$. Thus, the compound oxide $\text{Li}_2\text{Be}_2\text{O}_3$ may be an active component of the Li_2O -BeO system catalyst for the oxidative coupling of methane.

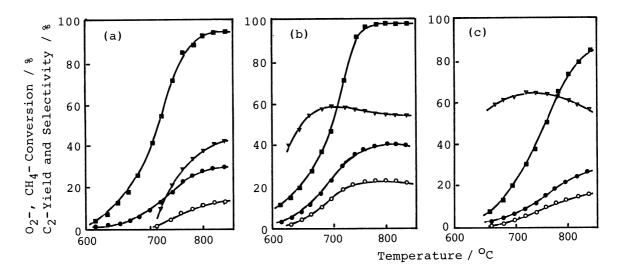


Fig. 2. Amount of CH_4 converted with reaction temperature over Li_2O-BeO system catalyst. (a) BeO, (b) 3 mol% Li-BeO, (c) 50 mol% Li-BeO ($Li_2Be_2O_3$). \blacksquare , O_2 -conversion; \bullet , CH_4 -conversion; \bullet , C_2 -yield; \blacktriangledown , C_2 -selectivity.

Figure 3 shows the results obtained from the reaction carried out under the pressure of one atmosphere. The partial pressure of CH_4 and O_2 were varied using 0.5 g at 680 ^{O}C and 0.05 g at 760 ^{O}C . The figure reveals that the selectivity of

Catalyst	BeO	+ Li / mol%					
		1	3	7	12.5	20	50b)
Surface area / m ² g ⁻¹	14.1	7.0	1.1	0.4	0.2	0.1	0.1
Amounts of catalyst / g	0.2	0.1	0.05	0.2	0.3	0.5	0.5
O ₂ - Conversion / %	81.2	87.4	91.3	83.5	81.4	81.0	80.1
CH ₄ - Conversion / %	26.0	35.9	39.9	36.6	35.6	37.4	37.7
C ₂ - Yield / %	8.1	18.4	22.6	20.8	21.5	22.8	24.5
C ₂ - Selectivity / %	31.2	51.6	56.6	56.9	58.8	61.0	65.0
$C_{2}^{=}/(C_{2}^{=}+C_{2})\times 100 / %^{c}$	57.9	62.1	65.1	64.4	66.2	70.6	68.0

a) $P(CH_4) = 35.0 \text{ kPa}$, $P(O_2) = 16.5 \text{ kPa}$. b) $Li_2Be_2O_3$.

c) $C_2^= = C_2H_4$, $C_2 = C_2H_6$.

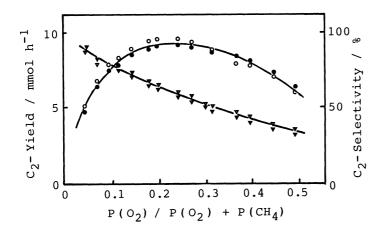


Fig. 3. Dependence on partial pressures of reaction gases for C₂-yield on 3 mol% Li-BeO.

• and •, C₂-yield and selectivity using 0.5 g at 680 °C.

•and \mathbf{v} , C_2 -yield and selectivity using 0.05 g at 760 $^{\rm O}C$.

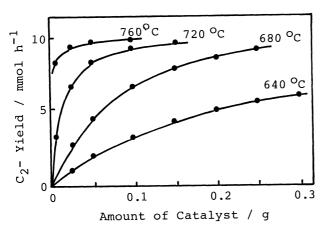


Fig. 4. Effect of amount of catalyst for C_2 -yield. Catalyst: 3 mol% Li-BeO; $P(CH_4) = 76.0 \text{ kPa}$, $P(O_2) = 25.0 \text{ kPa}$.

 C_2 -compounds was as high as 84% under the low partial pressure of O_2 with the value dropping with increases in the oxygen pressure. In both of the experiment, the optimum yield of C_2 -compounds was obtained with the ratio of $P(O_2) / P(O_2) + P(CH_4)$ being between 0.2 and 0.3.

1476 Chemistry Letters, 1987

React. t	emp C ₂	C ₂ -STY		CH ₄ -Conv.	C ₂ -Yield	C ₂ -Select.	W/F
°C	mmol g	-1 · h-1	8		8	8	g h 1 ⁻¹
640	1	1	69.6	19.8	10.1	51.0	0.1666
680	1	7	96.6	27.5	14.3	52.0	0.1666
	4	3	40.5	13.5	8.1	60.0	0.0333
720	6	1	81.6	25.5	14.9	58.4	0.0333
	12	8	54.8	18.7	12.0	64.2	0.0166
760	17	8	93.3	28.4	16.6	58.5	0.0166
	81	3	72.5	24.2	15.2	63.1	0.0033

Table 2. C₂-STY to Oxidative Coupling of Methane on 3 mol% Li-BeO Catalyst a)

In Fig.4, the methane oxidation is represented, performed under the partial pressure conditions of 76.0 kPa of CH₄ and 25.0 kPa of O₂ with different weights of catalyst at various reaction temperatures. On the basis of these results we calculated C₂-STY (Space Time Yield of C₂-compounds) for W/F at various temperatures and listed the values in Table 2. Otsuka and Komatsu ⁶⁾ recently reported that Sm_2O_3 is the most effective catalyst for the reaction. As described in their report, the C₂-STY for the catalyst of Sm_2O_3 is 527 mmol g⁻¹ h⁻¹ at 0.0033 g h 1⁻¹ of W/F at 750 °C. Table 2 reveals that the C₂-STY of the catalyst 3 mol% Li-BeO is the same that of the above Sm_2O_3 catalyst.

In conclusion, BeO promoted with Li was found to have the high activity and selectivity for the oxidative coupling of methane. The $\rm Li_2O$ reacts with BeO to form the compound oxide $\rm Li_2Be_2O_3$ at 700 $^{\rm O}{\rm C}$ easily. This compound oxide could be an active catalyst for the oxidative coupling of methane.

References

- 1) T.Ito, Ji-Xian Wang, Chiu-Hsun Lin, and J.H.Lunsford, J. Am. Chem. Soc., 107, 5062 (1985).
- 2) K.Otsuka, Qin Liu, M.Hatano, and A.Morikawa, Chem. Lett., 1986, 467.
- 3) N. Yamagata, K. Tanaka, S. Sasaki, and S. Okazaki, Chem. Lett., 1987, 81.
- 4) I. Matsuura, Y. Utsumi, M. Nakai, and T. Doi, Chem. Lett., 1986, 1981.
- 5) JCPDS., Powder Diffraction File. File No. 20-160.
- 6) K.Otsuka and T. Komatsu, Chem. Lett., 1987, 483.

(Received April 10, 1987)

a) $P(CH_A) = 76.0 \text{ kPa}$, $P(O_2) = 25.0 \text{ kPa}$.